Course Syllabus
Conservation Genetics -- Zool 584
Dr. Ed Heist

Course Description: Application of principles from evolutionary and ecological genetics to conservation biology, fishery management, wildlife management, and aquaculture. Includes an overview of classical, molecular, population and quantitative genetics leading to an understanding of how managers can conserve genetic diversity and evolutionary potential of natural and captive populations.


Meeting Times: LS III 1003. Tuesday and Thursday 9:00 – 10:15 AM.

Office Hours: LS III 1019. Tuesday and Thursday 10:30 AM – 12:00 PM.

Evaluation: Four quarterly exams will be administered. Exams will consist primarily of short essay, short answer, and definition of terms. The final grade for this course will be determined by the mean of the four exam scores.
<table>
<thead>
<tr>
<th>Date</th>
<th>Chapter</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Aug</td>
<td>No Class</td>
<td></td>
</tr>
<tr>
<td>21-Aug</td>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>26-Aug</td>
<td>2</td>
<td>Phenotypic variation in natural populations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Genetic variation in natural populations: chromosomes and proteins</td>
</tr>
<tr>
<td>28-Aug</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2-Sep</td>
<td>4</td>
<td>Genetic variation in natural populations: DNA</td>
</tr>
<tr>
<td>4-Sep</td>
<td></td>
<td>Conservation Genetics Lab tour</td>
</tr>
<tr>
<td>9-Sep</td>
<td>5</td>
<td>Random mating populations: Hardy Weinberg Principle</td>
</tr>
<tr>
<td>11-Sep</td>
<td>6</td>
<td>Small populations and genetic drift</td>
</tr>
<tr>
<td>16-Sep</td>
<td></td>
<td>Exam 1 Chapters 1-5</td>
</tr>
<tr>
<td>18-Sep</td>
<td>7</td>
<td>Effective population size</td>
</tr>
<tr>
<td>23-Sep</td>
<td>8</td>
<td>Natural selection</td>
</tr>
<tr>
<td>25-Sep</td>
<td>9</td>
<td>Population subdivision 1</td>
</tr>
<tr>
<td>30-Sep</td>
<td>9</td>
<td>Population subdivision 2</td>
</tr>
<tr>
<td>2-Oct</td>
<td>10</td>
<td>Multiple loci</td>
</tr>
<tr>
<td>7-Oct</td>
<td>11</td>
<td>Quantitative genetics 1</td>
</tr>
<tr>
<td>9-Oct</td>
<td></td>
<td>Exam 2 Chapters 6-10</td>
</tr>
<tr>
<td>16-Oct</td>
<td>11</td>
<td>Quantitative genetics 2</td>
</tr>
<tr>
<td>21-Oct</td>
<td>12</td>
<td>Mutation</td>
</tr>
<tr>
<td>23-Oct</td>
<td>13</td>
<td>Inbreeding depression</td>
</tr>
<tr>
<td>28-Oct</td>
<td>14</td>
<td>Demography and Extinction</td>
</tr>
<tr>
<td>30-Oct</td>
<td>15</td>
<td>Metapopulations and fragmentation</td>
</tr>
<tr>
<td>4-Nov</td>
<td>16</td>
<td>Units of conservation 1</td>
</tr>
<tr>
<td>6-Nov</td>
<td></td>
<td>Exam 3 Chapters 11-15</td>
</tr>
<tr>
<td>11-Nov</td>
<td>16</td>
<td>Units of conservation 2</td>
</tr>
<tr>
<td>13-Nov</td>
<td>17</td>
<td>Hybridization</td>
</tr>
<tr>
<td>18-Nov</td>
<td>18</td>
<td>Exploited populations</td>
</tr>
<tr>
<td>20-Nov</td>
<td>19</td>
<td>Conservation breeding and restoration</td>
</tr>
<tr>
<td>25-Nov</td>
<td>20</td>
<td>Invasive species</td>
</tr>
<tr>
<td>2-Dec</td>
<td>21</td>
<td>Climate Change</td>
</tr>
<tr>
<td>4-Dec</td>
<td>22</td>
<td>Genetic identification and monitoring</td>
</tr>
</tbody>
</table>